Reg. No.:					9	31		1
	Ц		<u> </u>		3 = 1			- 1

Question Paper Code: 51295

B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2013.

First Semester

Civil Engineering

MA 1101 — MATHEMATICS — I

(Common to All Branches)

(Regulation 2008)

Time: Three hours

Maximum: 100 marks

Answer ALL questions.

PART A — $(10 \times 2 = 20 \text{ marks})$

- 1. If the eigen values of the matrix A of order 3×3 are 2, 3 and 1, then find the eigen values of adjoint of A.
- 2. Find the nature of the quadratic form $x^2 + y^2 + z^2$ in four variables, without reducing into canonical form.
- 3. Find the equation of the sphere having the points (0, 0, 0) and (2, -2, 4) as ends of the diameter.
- 4. If $\frac{x}{3} = \frac{y}{4} = \frac{z}{k}$ is a generator of the cone $x^2 + y^2 z^2 = 0$, then find the value of k.
- 5. What is the radius of curvature of the circle $x^2 + y^2 = 25$ at any point on it?
- 6. Find the envelope of the family of curves $y=mx+\frac{1}{m}$, where m is the parameter.
- 7. If $x^3 + y^3 = 3 axy$, then find $\frac{dy}{dx}$.
- 8. If $x = r \cos \theta$, $y = r \sin \theta$, then find $\frac{\partial (r, \theta)}{\partial (x, y)}$.

- 9. Solve the deferential equation $\frac{d^2y}{dt^2} + 4\frac{dy}{dt} + 4y = 0.$
- 10. Convert the given variable coefficient differential equation $x^2 \frac{d^2 y}{dx^2} x \frac{dy}{dx} + y = x^2 \text{ a constant coefficient differential equation.}$

PART B — $(5 \times 16 = 80 \text{ marks})$

- 11. (a) (i) Find the eigen values and eigen vectors of $A = \begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{bmatrix}$. (8)
 - (ii) Verify Cayley-Hamilton theorem for $A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & -1 & 4 \\ 3 & 1 & -1 \end{bmatrix}$, hence use it to find A^{-1} .

Or

- (b) Reduce the quadratic form $3x^2 + 5y^2 + 3z^2 2yz + 2zx 2xy$ into a canonical form by orthogonal reduction. (16)
- 12. (a) (i) Find the equation to the right circular cylinder with radius 5 and whose axis is $\frac{x}{2} = \frac{y}{3} = \frac{z}{6}$. (8)
 - (ii) Find center and radius of the circle given by $x^2 + y^2 + z^2 + 2x 2y 4z 19 = 0$ and x + 2y + 2z + 7 = 0. (8)
 - (b) (i) Find the equation to the sphere having the circle $x^2 + y^2 + z^2 + 7y 2z + 2 = 0$; 2x + 3y + 4z = 8 as a great circle. (8)
 - (ii) Show that the lines $\frac{x-5}{4} = \frac{y-7}{4} = \frac{z+3}{-5}$ and $\frac{x-8}{7} = y-4 = \frac{z-5}{3}$ are coplanar. Find the plane containing them. (8)
- 13. (a) (i) Find the centre of curvature of the parabola $y^2 = 4ax$ at any point using parametric equations. (8)
 - (ii) Find the radius of curvature at any point of $y = \cosh\left(\frac{x}{c}\right)$. (8)

Or

(b) Find circle of curvature of the curve $\sqrt{x} + \sqrt{y} = \sqrt{a}$ at the point $\left(\frac{a}{4}, \frac{a}{4}\right)$. (16)

2

- 14. (a) (i) Expand $e^x \log(1+y)$ in powers of x and y up to terms of third degree. (8)
 - (ii) If w = f(y z, z x, x y), show that $\frac{\partial w}{\partial x} + \frac{\partial w}{\partial y} + \frac{\partial w}{\partial z} = 0$. (8)

Or

- (b) (i) Discuss the maxima and minima of the function $f(x, y) = x^3 y^2 (12 x y)$. (8)
 - (ii) If x = u(1-v), y = uv, compute J and J' and prove JJ' = 1. (8)
- 15. (a) (i) Solve $(D^2 4D + 3) y = e^{-3x} + 2x^2$. (8)
 - (ii) Solve $\frac{d^2y}{dx^2} + a^2y = \sec ax$ using variation of parameters. (8)

Or

(b) (i) Solve
$$(x^2 D^2 - xD + 1)y = \left(\frac{\log x}{x}\right)^2$$
. (8)

(ii) Solve
$$(D^2 + 4)y = \cos^2 x$$
. (8)